GIET POLYTECHNIC, JAGATPUR, CUTTACK ## LESSON PLAN | Discipline:
ELECTRICAL | Semester: 6 th | Name Of The Teaching Faculty: RUPAK KUMAR SAHOO | |---|---|---| | Subject: [TH-3] CONTROL SYSTEM & COMPONENTS | No. Of Days Per
Week Class
Allotted: 04 P | Semester From Start Date: 04.02.25 To Date: 17.05.25 No. of weeks: 15 | | Week | Class Day | Theory Topic | | 1 st week | | UNIT 1: FUNDAMENTAL OF CONTROL SYSTEM | | | 1 st | 1.1: Classfication of control system 1.2: Open loop system | | | 2 nd | 1.2: Closed loop system & its comparision | | | 3 rd | 1.3: Effects of feed back 1.4: Standard test signals (step, ramp) | | | 4 th | o 1.4: Standard test signals(parabolic, impulse functions) | | 2 nd week | 1 st | 1.5: Servomechanism 1.6: Regulators (Regulating systems) | | | 2 nd | UNIT 2 : TRANSFER FUNCTIONS | | | | 2.1: Transfer function of a system & impulse response | | | 3 rd | 2.2: Properties of a transfer function | | | 4 th | 2.2: Advantages & Disadvantages of transfer function | | | 1 st | 2.3: Poles & Zeroes of transfer function | | 3 rd week | 2 nd | 2.4: Representation of poles & zero on the s-plane | | | 3 rd | 2.4: Representation of poles and zero on the s-plane | | | 4 th | 2.5: Simple problems on transfer function of network | | | 1 st | 2.5: Simple problems on transfer function of network | | 4 th week | 2 nd | UNIT 3 : CONTROL SYSTEM COMPONENTS & MATHEMATICAL MODELLING OF PHYSICAL SYSTEM 3.1: Components of control system | | | 3rd | 3.1. Components of control system 3.2: Potentiometer, syncros | | | 4 th | 3.2: Diode modulator & demodulator | | | 1 st | 3.2: Diode modulator & demodulator 3.3: DC motors , ac servomotors | | | 2nd | 3.3: DC motors , ac servomotors 3.4: Modelling of electrical systems (R,L,C analogous system) | | — th | 2 | UNIT 4 : BLOCK DIAGRAM & SIGNAL FLOW GRAPHS | | 5 th week | 3 rd | 4.1: Definition of basic elements of a block diagram | | | 4 th | 4.2: Chemical form of closed loop system | | 6 th week | 1 st | 4.3: Rules for block diagram reduction | | | 2 nd | 4.4: Proceedure for reduction of block diagram | | | 3 rd | 4.5: Simple problem for equivalent transfer function | | | 4 th | 4.6: Basic definition in sfg & properties | | 7 th week | 1 st | 4.7: Mason's gain formula 4.8: Steps for solving signal flow graph | | | 2 nd | 4.9: Simple problems in signal flow graph for network | | | 3 rd | UNIT 5 : TIME DOMAIN ANALYSIS OF CONTROL SYSTEMS 5.1: Definition of time stability, steady state response | | | 4 th | 5.1: Definition of accuracy, transient accuracy, in-sensitivity & robustness | | 8 th week | 1 st | 5.2: System time response | | | 2 nd | 5.3: Analysis of steady state error | | | 3 rd | 5.4: Types of input & steady state error(step, ramp, parabolic) | | | 4 th | 5.5: Parameters of first order & second order system | | 9 th week | 1 st | 5.6: Derivation of time response specification (delay time, rising time) | | | 2 nd | 5.6: Derivation of time response specification(peak time , setting
time , peak overshoot) | |-----------------------|-----------------|--| | | 3 rd | UNIT 6 : FEEDBACK CHARACTERISTICS OF CONTROL SYSTEMS 6.1: Effect of parameter variation in open loop system | | | 4 th | 6.1: Effect of parameter variation in closed loop system | | 10 th week | 1 st | 6.2: Introduction to basic control action & basic modes of feedback
control: proportional, integral & derivative | | | 2 nd | 6.3: Effect of feedback on overall gain , stability | | | 3 rd | 6.4: Realisation of controllers (P, PI) with OPAMP | | | 4 th | 6.4: Realisation of controllers (PD, PID) with OPAMP | | | 1 st | UNIT 7 : STABILITY CONCEPT & ROOT LOCUS METHOD • 7.1: Effect of location of poles on stability | | 11 th week | 2 nd | o 7.1: Effect of location of poles on stability | | | 3 rd | o 7.2: RouthHurwitz stability criterion | | | 4 th | o 7.2: RouthHurwitz stability criterion | | | 1 st | • 7.3: Steps for root locus method | | | 2 nd | o 7.4: Root locus method of design | | 12 th week | 3 rd | o 7.4: Simple problems | | | 4 th | o 7.4: Simple problems | | | 1 st | UNIT 8: FREQUENCY RESPONSE ANALYSIS & BODE PLOT 8.1: Frequency response , relationship between time & frequency response | | 13 th week | 2 nd | 8.2: Method of frequency response | | | 3 rd | 8.3: Polar plots & steps for polar plots | | | 4 th | 8.4: Bode plots & steps for bode plots | | 14 th week | 1 st | 8.5: Stability in frequency domain, gain margin & phase margin | | | 2 nd | 8.6: Nyquist plots, Nyquist stability criterion | | | 3rd | 8.7: Simple problems as above | | | 4 th | UNIT 9: STATE VARIABLE ANALYSIS 9.1: Concept of state, state variable, state model | | | 1 st | 9.1: Concept of state, state variable, state model | | | 2 nd | 9.2: Steps model for linear continuous time function(simple) | | 15 th week | 3rd | 9.2: Steps model for linear continuous time function(simple) | | | 4 th | o REVISION | SIGNATURE OF FACULTY SIGNATURE OF SR. LECTURE Mean of Dopt. (HORE G: E.T (I-OLY), SIGNATURE OF PRINCIPAL