GIET POLYTECHNIC, JAGATPUR, CUTTACK

LESSON PLAN

Discipline: ELECTRICAL	Semester: 6 th	Name Of The Teaching Faculty: RUPAK KUMAR SAHOO
Subject: [TH-3] CONTROL SYSTEM & COMPONENTS	No. Of Days Per Week Class Allotted: 04 P	Semester From Start Date: 04.02.25 To Date: 17.05.25 No. of weeks: 15
Week	Class Day	Theory Topic
1 st week		UNIT 1: FUNDAMENTAL OF CONTROL SYSTEM
	1 st	1.1: Classfication of control system 1.2: Open loop system
	2 nd	1.2: Closed loop system & its comparision
	3 rd	 1.3: Effects of feed back 1.4: Standard test signals (step, ramp)
	4 th	o 1.4: Standard test signals(parabolic, impulse functions)
2 nd week	1 st	 1.5: Servomechanism 1.6: Regulators (Regulating systems)
	2 nd	UNIT 2 : TRANSFER FUNCTIONS
		2.1: Transfer function of a system & impulse response
	3 rd	2.2: Properties of a transfer function
	4 th	2.2: Advantages & Disadvantages of transfer function
	1 st	2.3: Poles & Zeroes of transfer function
3 rd week	2 nd	2.4: Representation of poles & zero on the s-plane
	3 rd	2.4: Representation of poles and zero on the s-plane
	4 th	2.5: Simple problems on transfer function of network
	1 st	2.5: Simple problems on transfer function of network
4 th week	2 nd	UNIT 3 : CONTROL SYSTEM COMPONENTS & MATHEMATICAL MODELLING OF PHYSICAL SYSTEM 3.1: Components of control system
	3rd	3.1. Components of control system 3.2: Potentiometer, syncros
	4 th	3.2: Diode modulator & demodulator
	1 st	3.2: Diode modulator & demodulator 3.3: DC motors , ac servomotors
	2nd	3.3: DC motors , ac servomotors 3.4: Modelling of electrical systems (R,L,C analogous system)
— th	2	UNIT 4 : BLOCK DIAGRAM & SIGNAL FLOW GRAPHS
5 th week	3 rd	4.1: Definition of basic elements of a block diagram
	4 th	4.2: Chemical form of closed loop system
6 th week	1 st	4.3: Rules for block diagram reduction
	2 nd	4.4: Proceedure for reduction of block diagram
	3 rd	4.5: Simple problem for equivalent transfer function
	4 th	4.6: Basic definition in sfg & properties
7 th week	1 st	 4.7: Mason's gain formula 4.8: Steps for solving signal flow graph
	2 nd	 4.9: Simple problems in signal flow graph for network
	3 rd	UNIT 5 : TIME DOMAIN ANALYSIS OF CONTROL SYSTEMS 5.1: Definition of time stability, steady state response
	4 th	 5.1: Definition of accuracy, transient accuracy, in-sensitivity & robustness
8 th week	1 st	5.2: System time response
	2 nd	5.3: Analysis of steady state error
	3 rd	5.4: Types of input & steady state error(step, ramp, parabolic)
	4 th	5.5: Parameters of first order & second order system
9 th week	1 st	 5.6: Derivation of time response specification (delay time, rising time)

	2 nd	 5.6: Derivation of time response specification(peak time , setting time , peak overshoot)
	3 rd	UNIT 6 : FEEDBACK CHARACTERISTICS OF CONTROL SYSTEMS 6.1: Effect of parameter variation in open loop system
	4 th	6.1: Effect of parameter variation in closed loop system
10 th week	1 st	 6.2: Introduction to basic control action & basic modes of feedback control: proportional, integral & derivative
	2 nd	6.3: Effect of feedback on overall gain , stability
	3 rd	6.4: Realisation of controllers (P, PI) with OPAMP
	4 th	6.4: Realisation of controllers (PD, PID) with OPAMP
	1 st	UNIT 7 : STABILITY CONCEPT & ROOT LOCUS METHOD • 7.1: Effect of location of poles on stability
11 th week	2 nd	o 7.1: Effect of location of poles on stability
	3 rd	o 7.2: RouthHurwitz stability criterion
	4 th	o 7.2: RouthHurwitz stability criterion
	1 st	• 7.3: Steps for root locus method
	2 nd	o 7.4: Root locus method of design
12 th week	3 rd	o 7.4: Simple problems
	4 th	o 7.4: Simple problems
	1 st	UNIT 8: FREQUENCY RESPONSE ANALYSIS & BODE PLOT 8.1: Frequency response , relationship between time & frequency response
13 th week	2 nd	8.2: Method of frequency response
	3 rd	 8.3: Polar plots & steps for polar plots
	4 th	8.4: Bode plots & steps for bode plots
14 th week	1 st	8.5: Stability in frequency domain, gain margin & phase margin
	2 nd	8.6: Nyquist plots, Nyquist stability criterion
	3rd	8.7: Simple problems as above
	4 th	UNIT 9: STATE VARIABLE ANALYSIS 9.1: Concept of state, state variable, state model
	1 st	9.1: Concept of state, state variable, state model
	2 nd	9.2: Steps model for linear continuous time function(simple)
15 th week	3rd	9.2: Steps model for linear continuous time function(simple)
	4 th	o REVISION

SIGNATURE OF FACULTY

SIGNATURE OF SR. LECTURE
Mean of Dopt. (HORE
G: E.T (I-OLY),

SIGNATURE OF PRINCIPAL